

Enhancing National Digital Identity Systems: A Framework for Institutional and Technical Harm Prevention Inspired by Microsoft's Harms Modeling

Giovanni Corti^{1,3} a, Gianluca Sassetto^{1,4} b, Amir Sharif¹ c, Roberto Carbone¹ d and Silvio Ranise^{1,2} e

¹Center for Cybersecurity, FBK, Trento, Italy

²Department of Mathematics, University of Trento, Trento, Italy

³Department of Defence Studies, King's College London, London, U.K.

⁴Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy

Keywords: Identity Management, Harms Modeling, Human Rights, Institutional Path Dependence.

Abstract: The rapid adoption of National Digital Identity systems (NDIDs) across the globe underscores their role in ensuring the human right to identity. Despite the transformation potential given by digitization, these systems introduce significant challenges, particularly concerning their safety and potential misuse. When not adequately safeguarded, these technologies can expose individuals and populations to privacy risks as well as violations of their rights. These risks often originate from design and institutional flaws embedded in identity management infrastructures. Existing studies on NDIDs related harms often focus narrowly on technical design issues while neglecting the broader institutional infrastructures that enable such harms. To fill this gap, this paper extends the collection of harms for analysis through a qualitative methodology approach of the existing harm-related literature. Our findings suggest that **80%** of NDID-related harms are the product of suboptimal institutions and poor governance models, and that **47.5%** of all impacted stakeholders are considered High Risk. By proposing a more accurate harm assessment model, this paper provides academia and the industry with a significant contribution that allows for identifying the possibility of NDID-related harms at an embryonic state and building the necessary infrastructure to prevent them.

1 INTRODUCTION

Civil registration and efficient Identity Management systems (IdMs) are essential for providing individuals worldwide with a legal identity as well as tackling the statelessness crisis, which to this day affects 1 billion people globally (Desai et al., 2018). More studies reveal that a quarter of all children age five and under worldwide do not possess any form of birth registration (UNICEF, 2020), and that half of the African population is not registered at birth (Chinganya, 2019). A legal identity is considered a human right under Article 6 of the Universal Declaration of Human Rights (United Nations, 2021), and in light of

the previously mentioned deficiencies in guaranteeing this right on a global scale, the attention of governments worldwide has turned to the capabilities of digital IdMs in achieving greater access to identification. The adoption of digital IdMs ranges from guaranteeing identification and authentication to enhancing security across technological infrastructures, but also to simplifying the user experience in a wide range of web applications and online services (Bertino and Takahashi, 2010). Today, the adoption of National Digital Identity systems (NDIDs) allows for easy access to governmental services and applications both online and offline with a uniform user experience. As of 2022, at least 186 nations worldwide (out of 198) have adopted NDIDs.¹ Adopting an NDID requires the collection, storage, and sharing of sensible and identifying personal data that exposes individuals—both the direct users and the general population—to a

^a <https://orcid.org/0009-0006-8717-7512>

^b <https://orcid.org/0009-0006-2239-1913>

^c <https://orcid.org/0000-0001-6290-3588>

^d <https://orcid.org/0000-0003-2853-4269>

^e <https://orcid.org/0000-0001-7269-9285>

¹<https://id4d.worldbank.org/global-dataset>

range of potential threats (e.g., data leak) and harms (e.g., discrimination) (Hernández, 2024). For example, in January 2018, the world's biggest ID database was breached, exposing the identities and biometric information of more than 1 billion Indian citizens (World Economic Forum, 2019). As a consequence, NDIDs' increased adoption is just as significant as the controversies that they have raised (Center for Human Rights and Global Justice (NYU), 2022).

The role of stakeholders is an important consideration that is too often disregarded in the NDIDs discourse. Individual users, service providers, institutions, and the general public are all to some extent affected by NDIDs. A comprehensive Harms Modeling strategy involving all stakeholders is essential to avoid incomplete impact assessments. Without broad representation, harms can extend beyond data breaches, affecting societal institutions, reinforcing power imbalances, and intensifying existing disparities. For example, marginalized communities may be subject to disproportionate surveillance or biased profiling as a result of system design flaws or even underlying institutional biases (The Institute on Stalessness and Inclusion, 2020).

To the best of our knowledge, the current literature presents the following gaps: (i) There is no comprehensive survey of NDID-related harms around the world. (ii) Most existing studies only focus on NDID-related harms caused by technological flaws, and limited attention is instead given to the suboptimal institutional infrastructures that enable them. (iii) There is a lack of analysis of the causes of each harm. (iv) There is no framework other than Microsoft's (Microsoft Corporation, 2022) for harm assessment of emerging technologies, and even in Microsoft's case, its limitations lead to underrepresentation of all impacted stakeholders and inaccurate assessment of potential harm.

To address these gaps, this paper extends Microsoft's Harms Modeling (Microsoft Corporation, 2022) with a detailed qualitative analysis of the roots of harms related to NDIDs. It introduces a more accurate, NDID-focused harm measurement model that helps anticipate potential harms and captures both direct and indirect harm to General End Users. Our research provides actionable insights for harm-aware policymaking and assessment of NDID-enabled harm potential in emerging technology solutions. In summary, the paper provides two main contributions:

- A survey and analysis of the harms related to NDIDs, which also allows us to broaden the list of affected stakeholders and analyze the root of each harm.
- Extend Microsoft's Harms Modeling methodol-

ogy by integrating the extended list of new harms and stakeholders and the root of each harm, which provides actionable insights for assessing NDID infrastructures.

2 BACKGROUND

To make the paper self-contained, we briefly cover the main notions underlying IdMs, NDIDs, Harms, Threats, and Microsoft's Harms Modeling.

2.1 Identity Management Systems

IdMs offer identification and authentication services, provide users with a digital identity, and allow them to access their remote resources online. IdMs may create large and complex infrastructures in which a number of services (RPs) rely on the digital identity issued by identity providers (IdPs), which in turn enroll and authenticate users. In this context, NDIDs represent a special case of IdMs that is designed to access governmental resources. In this paper, we consider both centralized and decentralized IdMs. In decentralized systems, IdPs are referred to as *Issuers*, and RPs are called *Verifiers*. Given the wider audience of NDIDs and the sensitivity of the data and resources they handle, they need to ensure a high security and privacy profile for all users. We refer to the extended set of NDID users as *General End Users*, which include all people impacted by the deployment of NDIDs, including indirect users (for example, the children of parents who are denied medical assistance (Center for Human Rights and Global Justice (NYU), 2021) or access to welfare programs (Sawhney et al., 2021) as a result of NDID-related harms). Among General End Users, we highlight *High-Risk stakeholders*: a subset of the General End Users category considered at risk of experiencing disproportionate harm (e.g., stateless people) (OpenID Foundation, Elizabeth Garber and Mark Haine (editors), 2023).

2.2 Harms Modeling and Threat Modeling

In this paper, we focus on harms, which, despite some similarities, differ from threats, as highlighted in Figure 1. A threat is an event with the potential to adversely impact organizational operations, assets, or individuals (Gutierrez et al., 2006). Threats occur through attacks exploiting one or more system vulnerabilities. Harms are events or circumstances that negatively impact stakeholders directly or indirectly interacting with the system that do not necessarily occur

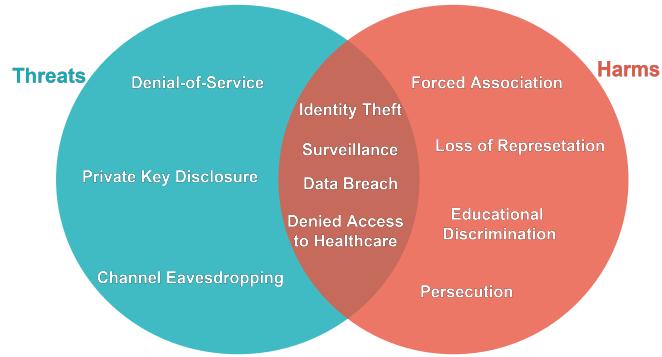


Figure 1: Intersection between threats and harms.

through an attack. Harms may result from flawed system design and the disregard of the system’s impact on users. A perfectly secure and privacy-preserving system may still harm its users if it violates one or more of their rights.

An example of a threat is a denial-of-service attack during which users are denied access to services due to malfunctions in the technical infrastructure. Instead, a harm would be the loss of representation as a consequence of being unable to access NDIDs.

2.3 Microsoft’s Harms Modeling and Foundations for Assessing Harm

Microsoft’s Harms Modeling framework (Microsoft Corporation, 2022) has been developed to assess the harms produced by emerging technology solutions and consists of five steps. Step (i) focuses on examining the scope, goals, and technology employed in the project. Step (ii) describes in detail the technology use cases, which helps the assessor identify instances of abuse and misuse (Strohmayer et al., 2021).

Step (iii), *Consider Stakeholders*, identifies all possible stakeholders, including both those directly and indirectly impacted by the system (we refer to this superset of users as General end users). Identification of all individuals is crucial for a more comprehensive and inclusive harm assessment. Step (iv), *Assess potential for harm*, is the central part of the analysis. Harms are first identified, enumerated, and subsequently evaluated in function of the system design and the impacted stakeholders. To do this, Microsoft suggests a qualitative and collaborative approach to better grasp the potential extent of identified harms. One way to identify potential harms is to brainstorm with a selection of stakeholders. We use historical data to develop a comprehensive selection of harms related to NDIDs and assess their impact (see Section 3). This approach allows for a more accurate assessment of potential for harm because it provides the

parties involved in the harm potential evaluation with an extensive list of real-world cases of harms, harm categories, and examples that help to visualize how harm could occur.

Additionally, during step (iv), four metrics are produced to help evaluate the potential for harm: *severity*, *scale*, *probability*, and *frequency*. Severity refers to the degree of harm on impacted stakeholders. Scale measures the range of the harm; this could be a single individual, a community, the broader user base, or even the whole population itself. Finally, Probability measures the chances of a harm being inflicted on stakeholders, while frequency indicates the quantification of the repetition of a harm. The *potential* of each harm is carried out as a function of these four metrics. The reader should note that Microsoft’s framework only differentiates harm potential in three categories: low, medium, and high. It does not explain how the potential is carried out, nor what the threshold is between low, medium, and high potential. The assessors are thus tasked with defining their own potential functions.

Harm potential helps weigh the effect of different harms on stakeholders. Step (v), *Build for positive outcomes*, is dedicated to interpreting the results of the previous steps and providing solutions for mitigating harm potential. In our paper, we focus on steps (iii) and (iv) as these steps are the foundation of both Microsoft’s Harms Modeling and our adapted *NDID Harms Modeling*.

3 METHODOLOGY

We propose a qualitative methodology approach, with which we collect NDID-related harms documented worldwide, and we interpret them in function of our NDID Harms Modeling, based on Microsoft’s framework (Microsoft Corporation, 2022).

To gather the necessary data, we conducted a

Table 1: Excerpt of harms evaluation using NDID Harms Modeling. The columns that were added are highlighted in yellow. SH stands for stakeholders.

Harm	SH (Specific)	SH (General)	Root (Specific)	Root (General)	Potential
Amplification of power inequality	Lower classes	High Risk	Abuse of power, undermining of democratic and social processes	Institutional Pitfall	HIGH
Identity theft	Direct users	General End Users	Exposure of sensitive information	Design Flaw	HIGH
Denied medical assistance	Vulnerable individuals	High Risk	Poor governance and/or deployment	Institutional Pitfall	HIGH
Denied monetary assistance	Low-income earners	High Risk	Poor governance and/or deployment	Institutional Pitfall	HIGH
Overreach and Surveillance	Direct users	General End Users	Abuse of power	Institutional Pitfall	HIGH
No Right to an identity	Marginalized communities	High Risk	Unlawful procedures	Institutional Pitfall	HIGH

survey of harms directly and indirectly produced by NDIDs globally. Sourcing the harms from real-world cases allows for a more fine-grained categorization and proof of the relevance and accuracy of each harm. We first identified the countries that had developed and deployed NDIDs using the data provided by the World Privacy Forum.² We identified the relevant academic and gray literature on NDID-related harms using tailored search queries on three different search engines (Google, DuckDuckGo, and Yandex) with state-of-the-art adverse media search tools³ and organized the harms collected in a final selection of harms. The queries we used were: (*digital identity OR identity management OR IdM OR NDID OR NeID OR eID*) AND (*harm OR risk OR problem OR issue OR threat OR challenge OR abuse OR misuse*) AND *name of country* (for each country we previously identified). We started with **83** potentially relevant sources. After removing duplicates and selecting sources based on their title, abstract, and content, we were left with **71** relevant sources. From these, we analyzed the references and collected **5** additional sources for a total of **76** sources. A complete list of sources is available on our companion website (Corti, 2025). These include academic papers, journalistic pieces, white papers, and other relevant grey literature, and were collected during the months of July and August 2024. All sources of harms were cross-checked to assess their validity as well as the trustworthiness of the information they contained.

The results of our survey were then integrated into the Harms Modeling framework. During this step, we extended the original framework by adding new

columns to support our analysis (the reader can find them highlighted in Table 1). We added (i) a column to include the harms found during the survey, (ii) two columns, *Stakeholders (Specific)* and *Stakeholder (General)*, for a detailed analysis of all affected stakeholders, and (iii) another two columns, *Roots of harm (Specific)* and *Roots of harm (General)*, to trace each harm back to a specific cause. We populated these additional columns referencing the relevant literature and stakeholders impacted by the harms collected during the survey (OpenID Foundation, Elizabeth Garber and Mark Haine (editors), 2023; Center for Human Rights and Global Justice (NYU), 2022). Harms were also classified according to whether they targeted specific subsets of stakeholders (High Risk Stakeholders), or all stakeholders indiscriminately. Finally, for the evaluation of the roots of harm, we defined two new terms: *Design Flaw* and *Institutional Pitfall*. The former covers all harms produced by a technological flaw in the Design of the NDIDs, including flaws caused by poor design choices as well as flaws produced by the lack of specific technologies (e.g., Privacy-Enhancing Technology, selective disclosure, anonymous revocation, etc.). The latter incorporates all harms produced or enabled by flawed institutional infrastructures responsible for the development and deployment of NDIDs. Examples of institutional pitfalls include (but are not limited to) corrupt practices, inadequate data governance legislation, abuse of authority, lack of issue-specific agencies, and lack of critical information protection infrastructures. These additions to the original framework make up for its shortcomings, i.e., inconsideration of all impacted stakeholders and missing insights into the roots of harm, and allow for holistic, in-depth interpretations of the collected harms.

²<https://www.worldprivacyforum.org/2021/10/national-ids-and-biometrics>

³<https://www.no-nonsense-intel.com/adverse-media-search-tool>

3.1 NDID Harms Modeling Walk-Through

The end result of our Harms evaluation (Table 1) using NDID Harms Modeling is an easy-to-interpret, visual representation of different harms, along with the root cause for said harms, the stakeholders affected by it, and an assessment of their potential impact. Our example evaluation shows how NDID Harms Modeling can allow for an exhaustive and accurate harm assessment of NDIDs in real-world applications. This provides all parties involved in the development and deployment of emerging NDIDs with a framework that anticipates harm potential with more accuracy and allows them to mitigate the identified risks and develop harm-free NDIDs.

Our Harm evaluation example (Table 1), allows for two particular values to stand out: the percentage of High Risk Stakeholders and the percentage of Design Flaws and Institutional Pitfalls. In other words, thanks to the addition of columns *Roots of harm (Specific)* and *Roots of harm (General)* that trace each harm back to a specific cause, a harm evaluation through *NDID Harms Modeling* highlights whether each identified harm is caused by design flaws in the technology or by poor governance and institutional capacity. In real-world applications, this allows for better assessment the potential for harm infliction on an extended pool of stakeholders at the development stage.

To present a real-world working example of harm evaluation through NDID Harms Modeling, we highlight one harm from Table 1. According to our literature review, in 2022 a technical flaw in the UK’s National Health Service (NHS) record system inadvertently exposed personal and sensitive patient information which notified domestic abusers of their’ victims medical appointments (Oppenheim, 2022). In this case, the lack of privacy-preserving technologies and interoperability within the complex set-up of 32,000 different computer systems in the NHS’ infrastructure even allowed domestic abusers to track down their victims.

In our harms evaluation example (Table 1), we identified this as “Exposure to Domestic Abusers” harm, which impacts victims of domestic abusers, which in turn, are classified as High Risk stakeholders. This harm is caused by the exposure of sensitive information, which finds its roots in a Design Flaw in the technical architecture of the system.

In real-world scenarios like this, NDID Harms Modeling would enable all parties involved in system development to effectively evaluate possible negative outcomes, anticipate potential harms, and identify all

affected stakeholders. More broadly, it would help developers detect system flaws that might put users at risk, while also providing a *potential* metric of harm that clarifies the full scope of identified risks.

This example from our research helps grasp the importance of step (iii) *Consider Stakeholders*, and (iv) *Assess Potential for Harms* at the foundation of Microsoft’s Harms Modeling and our NDID Harms Modeling. Additionally, it highlights the need for a thorough and all-stakeholder-inclusive evaluation of harm potential at an early stage of emerging technology development. An extensive harm analysis such as the one proposed in this paper through NDID Harms Modeling would lead to a more accurate identification of harm potential and the development of Harm-free NDID systems. In other words, in an ideal scenario where an exhaustive and rigorous harm assessment that considers all impacted stakeholders is carried out, the only harms the users could realistically be exposed to should be limited to unforeseeable causes, such as zero-day exploits (for Design Flaws), and a few inherent limitations of bureaucratic and institutional structures (for Institutional Pitfalls).

4 RESULTS

With our survey, we identified a total of **39** harms, which we derived from a total pool of **76** sources. Table 1 presents an excerpt of the results; the complete table is listed on our website (Corti, 2025). From the analysis of the harms, we have found that:

- High-Risk Stakeholders account for an alarming **49%** of all affected stakeholders, while the remaining **51%** are General End Users.
- Stakeholders (specific) sourced from the literature include pregnant women, low-income earners, lower classes, victims, minorities, vulnerable individuals, marginalized communities, and direct users.
- Institutional Pitfalls make up **80%** of all roots of harm analyzed, while the remaining **20%** are instead traced back to Design flaws.
- Roots of harm (specific) that we have found include (but are not limited to): exclusion from welfare systems, exposure of sensitive information, poor governance and/or deployment, discriminatory processes, unlawful procedures, abuse of power, poor technical design choices, and discriminatory processes, denial of human rights, biased institutions.
- *Exclusion from welfare system* together with *Exposure of sensitive information* are the two most

frequent Specific roots of harm.

- The category with the most sources documenting the harms is: *Infringement on human rights*, which also includes the two most extensively researched harms: *Exposure of Sensible Data* and *Overreach and Surveillance*.
- **34 out of 39 (87%)** harms analyzed are high potential (potential metric greater than 35).
- **16 out of the 19 (84%)** harms affecting High Risk stakeholders are high potential.
- **55%** of harms produced by technical design flaws and **97%** of harms rooted in institutional pitfalls are high potential.

5 CONCLUSION AND FUTURE WORK

In this paper, we have presented a survey of harms related to NDIDs, which is then embedded in an adaptation of Microsoft's Harms Modeling framework. The framework enables a user-centric evaluation of the impacts of NDIDs, highlighting their conflict with human rights and international law. The goal of the survey is to identify and evaluate harms. To do so, we analyzed academic and grey literature to investigate NDIDs-related harms across the world. Alarmingly, our results show that 80% of NDID-related harms are the product of suboptimal institutions and poor governance models and that 47.5% of all impacted stakeholders are considered High Risk. In future work, we plan to involve expert evaluations to validate the completeness and correctness of our qualitative findings, and we plan to investigate the potential of institutional path dependence theory and increasing returns dynamics in explaining the results of this research. The idea behind this approach is to analyze the causal, self-reinforcing relationship between poor governance models and suboptimal NDIDs, even in light of better alternatives. Additionally, future work will explore possible suboptimal-to-optimal path switch-over solutions in the name of harm-aware NDIDs.

ACKNOWLEDGEMENTS

This work has been partially supported by a joint laboratory between FBK and the Italian Government Printing Office and Mint and by project SERICS (PE00000014) under the MUR National Recovery

and Resilience Plan funded by the European Union - NextGenerationEU.

REFERENCES

- Bertino, E. and Takahashi, K. (2010). *Identity Management: Concepts, Technologies, and Systems*. Artech House.
- Center for Human Rights and Global Justice (NYU) (2021). Chased away and left to die. Accessed: 2024-02-13.
- Center for Human Rights and Global Justice (NYU) (2022). Paving a digital road to hell? Available at: Report: Digital Road to Hell.
- Chinganya, C. (2019). Speech at the 5th conference of africa ministers responsible for civil registration, expert group meeting. Available at: Civil Registration Expert Group Meeting.
- Corti, G. (2025). Complete List of NDID Harms. Available at: NDID Harms List.
- Desai, V., DiOfasi, A., and Lu, J. (2018). The global identification challenge: Who are the 1 billion people without proof of identity? Available at: The global identification challenge.
- Gutierrez, C. M., Jeffrey, W., and FURLANI, C. M. (2006). NIST FIPS PUB 200. Available at: NIST FIPS 200.
- Hernández, M. D. (2024). Why we need tailored identity systems for our digital world. Available at: Access-Now Web.
- Microsoft Corporation (2022). Harms Modeling Framework. Available at: Harms Modeling Framework.
- OpenID Foundation, Elizabeth Garber and Mark Haine (editors) (2023). Human-centric digital identity: for government officials. Available at: Human-Centric Digital Identity Report.
- Oppenheim, M. (2022). NHS to send alerts to domestic abuse victims. Available at: Independent UK News.
- Sawhney, R. S., Chima, R. J. S., and Aggarwal, N. M. (2021). *Busting the dangerous myths of big ID programs: Cautionary lessons from India*. Access Now Publication.
- Strohmayer, A., Slupska, J., Bellini, R., Coventry, L., Hairston, T., and Dodge, A. (2021). Trust and abuseability toolkit: Centering safety in human-data interactions. Northumbria University.
- The Institute on Stalessness and Inclusion (2020). Locked in and locked out: the impact of digital identity systems on rohingya populations. Available at: Report: Impact of NDIDs in Rohingya.
- UNICEF (2020). Birth registration data. Available at: UNICEF Report on Birth data.
- United Nations (2021). Universal declaration of human rights. Available at: UN declaration of Human Rights.
- World Economic Forum (2019). The global risks report 2019 (14th edition). Available at: Global Risks Report.