
HAL Id: hal-01426847
https://inria.hal.science/hal-01426847v1

Submitted on 5 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

UnlimitID
Marios Isaakidis, Harry Halpin, George Danezis

To cite this version:
Marios Isaakidis, Harry Halpin, George Danezis. UnlimitID. Proceedings of the 2016 ACM
on Workshop on Privacy in the Electronic Society, Oct 2016, Vienna, Austria. pp.139 - 142,
�10.1145/2994620.2994637�. �hal-01426847�

https://inria.hal.science/hal-01426847v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


UnlimitID: Privacy-Preserving Federated Identity
Management using Algebraic MACs

Marios Isaakidis
University College London

m.isaakidis@cs.ucl.ac.uk

Harry Halpin
INRIA

harry.halpin@inria.fr

George Danezis
University College London
g.danezis@ucl.ac.uk

ABSTRACT
UnlimitID is a method for enhancing the privacy of commod-
ity OAuth and applications such as OpenID Connect, using
anonymous attribute-based credentials based on algebraic
Message Authentication Codes (aMACs). OAuth is one of
the most widely used protocols on the Web, but it exposes
each of the requests of a user for data by each relying party
(RP) to the identity provider (IdP). Our approach allows for
the creation of multiple persistent and unlinkable pseudo-
identities and requires no change in the deployed code of
relying parties, only in identity providers and the client.

1. INTRODUCTION
One common user need is to sign on from a single provider

to multiple services (Single Sign On), where each service
can demand proof-of-authentication and authorization of the
transfer of personal data. OAuth [6] is the primary pro-
tocol for transferring attributes (user data) between iden-
tity providers (IdPs) that host user data and relying parties
(RPs) that demand user data. OAuth is considered to be
one of the most popular protocols on the Web, being used
by major providers such as Google, Twitter, Github, and
government services like GOV.UK Verify.

One key privacy shortcoming of OAuth is that it offers
no unlinkability between the IdP and the RPs in terms of
requests for the identity or data of a user. The IdP is con-
sidered completely trusted to provide authoritative informa-
tion on behalf of a user, and an honest but curious IdP can
collect detailed data on user behavior by logging the trans-
actions between itself and RPs on a per-user basis. The RPs
also link the user to their IdP, preventing pseudonymous or
anonymous usage of their service.

We present UnlimitID, which uses lightweight attribute-
based anonymous credentials based on algebraic MACs [1] to
provide unlinkability between an IdP and the various RPs
for a given user using unlinkable, but multi-use, pseudo-
identities. It can be deployed easily today as it requires no
changes to OAuth-compliant RPs, but only modest changes

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

to IdPs and the clients, and can enable unlinkable data flows
even when the user is offline. Section 2 overviews the OAuth
protocol and related literature, Section 3 describes Unlim-
itID, Section 4 describes the implementation and perfor-
mance considerations, and Section 5 evaluates the prospect
of a large scale deployment.

2. BACKGROUND
The protocol flow of OAuth involves a user, an identity

provider (IdP), and a relying party (RP) so that the RP
can access attributes on an IdP via the use of an access to-
ken. Once the user authenticates to the IdP, typically via
HTTP redirection from the RP, the IdP provides an ac-
cess token to the user, which when presented by the user
to the RP authorizes the server-side transfer of data from
the IdP to the RP. OAuth is a generalized protocol and so
specific variations may not be interoperable. OpenID Con-
nect is an established adaptation that standardizes OAuth
for transferring personal data, given as key-value pairs (such
as proof-of-authentication, name, age, photos) [9]. OAuth
can be interpreted as a capabilities-based system, where the
authorized access token effectively acts as a capability to ac-
cess attributes [5]. It is not necessary to link capabilities to
a single identity.

Previous work has discovered a large number of security
vulnerabilities in OAuth 2.0, but a more fundamental prob-
lem that has not been addressed is that the identity provider
in OAuth is assumed to be completely trusted and so may
log all user transactions with RPs and possibly even imper-
sonate a user on a RP (the “mixed-up IdP” attack) [4]. For
example, if Google OpenID Connect is used to authenticate
and authorize file access in an ”ephemeral” instant messaging
application like Wickr, Google would have metadata about
information sent from Google to Wickr for a particular user
even if Wickr deleted all metadata and information.

A number of techniques have been proposed for mitigat-
ing the privacy risk inherent in the OpenID/OAuth model.
One is to change the flow so that data is sent from the IdP
to the user and then from the user to the RP, as done by
Mozilla BrowserID and SPRESSO [3], achieving unlinkabil-
ity but at the cost of requiring the client to be online for all
transfer of attributes (unusable in practice) and moving the
root of trust to the user’s browser. Another technique is to
use blind signature for proving the possession of an identity
at an IdP to a RP without revealing the precise identity, as
done by PseudoID [2]. However, PseudoID relies on a cookie
for storing the RSA blinded access token so it can only be
used for one-time proof-of-authentication rather than the



transfer of attributes. Crypto-Book [8] proposes to enforce
privacy by the use of threshold cryptography between multi-
ple identity providers to establish a public key infrastructure
(PKI) and then to preserve anonymity vis-a-vis a group us-
ing linkable ring signatures to prove group identity and par-
tially blinded signatures for attribute transfer, but the use
of threshold cryptography to both establish a PKI and con-
sume credentials via RPs is incompatible with commodity
OAuth implementations like OpenID Connect.

3. DESIGN OF UNLIMITID
UnlimitID offers the creation of unlinkable pseudo-identities

that are tied to a RP with the use of multi-show credentials.
Our system supports selective attribute disclosure (such as
”show age”) without the need to reveal the pseudonym, so
that attributes can be verified without a persistent pseudo-
identity, effectively avoiding the harvesting of attributes over
time by the RP or the IdP. In addition, an IdP can allow
users to have multiple pseudo-identities with a RP, each of
them having different attributes. In this section we analyze
the threat model of UnlimitID and the desirable privacy and
security properties. Then, we explain how UnlimitID utilizes
algebraic MACs to provide unlinkable pseudonyms and how
it adapts to the OAuth protocol flow.

3.1 Threat Model
The main privacy concern is that an IdP can passively

collect the attributes a user selects to disclose to a RP, so
the threat model of UnlimitID is against curious but honest
IdPs that may independently, or by colluding with RPs, try
to uncover what services users are accessing with particular
attributes. We can also defend against malicious IdPs that
may want to impersonate a user on a RP, i.e. the ”mixed-
up IdP” attack. Malicious IdPs that deny authenticating a
user, the validity of a blinded signature, and the like are out
of scope, and the damage would be limited to the refusal of
the usage of RP services for a user. We also want to defend
against malicious users that take advantage of the anony-
mous credentials to create multiple pseudonymous accounts
with a RP for purposes of a sybil attack.

3.2 Privacy and Security Properties
UnlimitID is aiming towards the following properties:

• Persistent RP accounts (”Consistency”[2]) Users
can have long-lived pseudonymous accounts on RPs.

• Undetectability IdP and RPs cannot map pseudonyms
to the owner of the respective credentials.

• Unlinkability IdPs cannot link the different pseudonyms
of a user with the same or across RPs.

• Selective attributes disclosure Users can choose
which subset of their attributes to reveal to the RPs/IdP
each time. This property can support fine-grained
attribute-based policy systems.

• Multi-show credentials Credentials are locally blinded
by the user and can be used an arbitrary number of
times before their expiration date without revealing
the identity of the owner.

• Unforgability IdPs cannot impersonate the owner
of a pseudo-identity to a RP.

• Sybil resistance IdPs can enforce that users may
create up to a certain number of pseudo-identities with
each RP, with the possibility to limit users to a single
pseudonymous account per RP.

• Non-transferability An IdP may prevent or dis-
courage the transferability of pseudo-identities across
users.

Like OAuth, we do not define the authentication methods
or how to securely store and synchronize secrets between de-
vices. We do not control the values of the attributes trans-
ferred, and so a user may transfer values that reduce their
anonymity set or are uniquely identifying. We assume the
confidentiality of tokens in storage and in transit as well as
network traffic anonymity (such as provided by anonymous
proxy networks) and a secure user environment with trusted
cryptographic primitives.

3.3 Achieving Unlinkability
UnlimitID uses selective disclosure credentials, based on

algebraic messages authentication [1], to achieve its unde-
tectability and unlinkability properties. In particular we
use the MACGGM construction that is secure in the Generic
Group Model.

In a nutshell Unlimited achieves unlinkability in two phases:

1. First, a user authenticates to the IdP and gets issued
a credential encoding a long-term secret key and a
key/value pair denoting an attribute. The credential
also includes an expiry date after which it will need
to be re-issued. For the sake of simplicity, we assume
that all credentials issues contain four fields: a secret
key Sub unknown to the IdP, a Key and Value pair
of attributes, and an expiry time Exp.

2. In a second phase, the user blinds the credential and
deposits it back to the IdP to generate a pseudo-identity
specific to a RP service. At this point the IdP acts
in its normal role in the OAuth protocol, using the
pseudo-identity and the unlikable attributes to back
the authentication, and the user can authenticate to
the RP using the standard OAuth flow.

A few more things happen under the hood of this protocol:
the issued credential contains a long-term user secret Sub
unknown to the IdP, but stable over time for the user. When
the user blinds and shows the credential back to the IdP, it
uses this secret and specializes it to become a pseudonym for
the service that will be requested: the public Gid is derived
for a service as Gid = H(ServiceName), and the service spe-
cific user pseudonym is derived as UidService = GidSub. This
pseudonym is persistent for a specific client with a fixed
Sub, but unlinkable across services as well to the original
issuing protocol given by the IdP. The existence of a fixed,
long-term, per-service UidService allows the aggregation of
multiple credentials and their attributes into a persistent
pseudo-identity for transferring multiple data items or at-
tributes to a RP over multiple OAuth transactions.

3.3.1 Issuing of Credentials
The UnlimitID issuing protocol follows closely the issuing

protocol of selective disclosure credentials using an algebraic
MAC, and we use the notation in Chase et al [1] for the cre-
dential protocols. When the IdP is set up it runs the Setup



protocol to enumerate system wide parameters that are pub-
lic and shared by all system users. It is important to ensure
those parameters are used by all, since specializing them to
a specific user or a small set of them may allow the IdP
to link the two phases of UnlimitID. The IdP also runs the
CredKeyGen procedure, to generate a set of public and pri-
vate parameters, and shares with all its public parameters,
which have to be used by all. The private parameters are
keys secret to the IdP that are used to issue and verify the
blinded message authentication codes – those must be kept
secret at all times to preserve authenticity.

Issuing a credential closely follows the standard aMAC
based credential BlindIssue as described in Sect. 4.2 of Chase
et al. [1], using a single blind attribute for Sub, and three
public attributes for Key, Value and Exp. As part of this
process the user deposits an encryption of their secret value
Sub and proves knowledge of it – this is done once upon
account creation and the secret is reused for all subsequent
issuance to ensure stable pseudonyms. The result of the
issuance is a credential encoding (Key,Value,Exp,Sub)
along with an algebraic MAC attesting of its validity. The
credential and MAC can be blinded multiple times and used
multiple times, across time and sessions with different RPs.

3.3.2 Pseudonym registration
Given an issued credential from the IdP, a user performs

an unlinkable pseudonym registration as a prelude to an
OAuth session. The user runs the Show protocol, prov-
ing they have a valid MAC on a credential with known
attributes. Besides proving knowledge of the attributes,
the (Key,Value,Exp) attributes are revealed and associ-
ated with the pseudonym. Furthermore, a service specific
pseudonym UidService is derived as UidService = GidSub

Service

using the user secret Sub, and the service specific Gid =
H(ServiceName), where H is a cryptographically secure hash
function.

Technically, the Show protocol outputs four signed Peder-
sen commitments (Cm0 , Cm1 , Cm2 , Cm3 , ) encoding attributes
(Key,Value,Exp,Sub) respectively. We therefore augment
the protocol with an additional non-interactive zero-knowledge
proof, to prove that the pseudonym is well formed:

NIZK{(Sub, z0, z1, z2, z3) :

Cm0 = hz0ukey ∧ Cm1 = hz1uValue∧

Cm2 = hz2uExp ∧ Cm3 = hz3uSub∧

UidService = GidSub
Service}

The pseudonym is service specific and unlikable to the
originally linked credential, as well as other pseudonyms be-
yond the anonymity set reduction inherent in revealing the
attributes. The stable per-service pseudonym can be used
to aggregate multiple attributes as part of a single subse-
quent OAuth session. Thus multiple credential shows can be
performed to endow a pseudonym with multiple attributes.
After showing a number of blind credentials and creating a
pseudo-identity specific to a service, the traditional OAuth
flow can be executed, authenticating the user against the
pseudonym rather than their identity at the IdP.

3.4 UnlimitID Information Flow
UnlimitID is designed so as to be interoperable with ex-

isting OAuth 2.0 protocol deployments, although there is an

Figure 1: UnlimitID Information Flow

optional signature verification to prevent the ”mixed-up IdP”
attack that OAuth2 does not defend against in the standards
(mitigations that augment OAuth are under discussion by
the OAuth Working Group). In regard to terminology, an
UnlimitID user corresponds to an OAuth Resource Owner,
a RP to a Client and an IdP to an Authorization/Resource
Server.

3.4.1 Protocol Flow
We assume that the user has already been issued a creden-

tial for that epoch, as advised in 3.3.1. The flow is presented
in Figure 1 and explained in detail in the following steps:

1. A user visits a RP that requires authorization or au-
thentication.

2. The RP redirects the user to the IdP.

3. The user selects which attributes of her credential to
reveal, locally blinds it and deposits it along with the
aMAC to the IdP’s authorization endpoint.

4. The IdP validates the certificate in accordance to the
Show protocol in 3.3.2, checks the expiration date and,
if still valid, creates a temporary pseudo-identity en-
try with the revealed attributes in a database. This
entry will be stored by the IdP until the expiration
of the presented credential. If a pseudo-identity with
the same pseudonym already exists, the new attributes
are appended and update the respective entry in the
database.

5. The IdP redirects the user back to the RP, along with
an authorization code for accessing the respective pseudo-
identity database entry. In case the pseudonym at-
tribute was revealed, the user appends a signature un-
der the public key UIDservice = PK = GIDSub on
the authorization code, which is kept fresh by using a
nonce as per the OAuth standard. Note that the IdP
cannot forge the signature, since that would imply it
knows Sub.

6. The user passes the authorization code to the RP. Op-
tionally to defend against the ”mixed-up” IdP attack,
when a pseudonym is disclosed the RP will check that
the accompanying signature is fresh and that belongs
to the owner of the long-term secret key used to derive
the claimed pseudonym. Then the RP uses the autho-
rization code to obtain an access token from the IdP’s
token endpoint.

7. The RP can use the access token to request the pseudo-
identity’s attributes (e.g. a UserInfo structure [9])
from the IdP’s resource server endpoint.



3.4.2 Credentials rate limiting
The anonymity offered is in general analogous to the amount

of active users of the IdP across epochs without taking into
account details of values transferred, as the precise values
in transferred attributes may reduce the anonymity set (for
example, by transferring an uniquely identifying attribute).
Epochs are created to keep the expiration dates of pseudo-
identities uniform so they can not be de-anonymized by
virtue of differing expiration dates. Users get new creden-
tials in all epochs as their inactivity could be narrowed to
inactive pseudo-identities during that time. In order to pre-
vent timing attacks, we suggest a long expiration window
(such as 2 weeks) for credentials. Access tokens cannot ex-
ceed the expiration of the respective pseudo-identity; upon
expiration, an UnlimitID user can request the re-creation of
a pseudo-identity with the same identifier at the IdP. There
is a window of time at the end of every epoch when users can
request the issuance of new aMACs, which they can use to
extend the liveness of their pseudo-identities with the RPs.
Note that credentials issued during an epoch are valid till the
end of it, even when the respective user account is deleted
by the IdP. In the meantime, users may continue presenting
the asserted attributes to RP services. As a countermeasure
IdPs may enforce own policies at step 4 of the Unlimited
protocol flow (see 3.4.1), e.g. check that the user with the
revealed email is still active. Anonymous credential black-
listing is a not a goal for UnlimitID, although it could be
added. In addition, UnlimitID discourages the sharing of
credentials among users, since sharing a pseudo-identity se-
cret subsequently gives access to other pseudo-identities on
other RPs derived from that secret.

4. PROTOTYPE PERFORMANCE
We implemented the IdP issuing of credentials and pseu-

donym registration in Python to evaluate its performance.1

The implementation consists of 1874 lines of Python 3.4 for
the IdP credential server, divided into 495 lines for the IdP
server, 601 lines of a generic zero-knowledge proof library
and 778 lines for the core algebraic MAC protocols, includ-
ing unit and timing tests. The underlying cryptographic and
elliptic curve library used is petlib that wraps the OpenSSL
ec and bn modules. The EC curves used throughout is NIST
p192 which provides good performance on the x64 Intel ar-
chitecture thank to the handcrafted constant-time assembler
implementation [7]. The server uses the standard library
asyncio reactor loop framework, limiting computations to a
single core.

All tests were performed on an Intel Core i7-4700MQ run-
ning at 2.4Ghz with 16.0GB of RAM. The numbers reported
are an average of 10 runs. Timings were gathered using the
standard library time.monotonic() clock and all times are re-
ported in milliseconds (ms). We measured the timing of the
full user & server computations for issuing and pseudonym
registration, and also separated the user and server compo-
nents. The issuing protocol takes a total of 38ms seconds
per credential, of which 7ms are spend for user computa-
tions, and 31ms at the server. The showing protocol takes
in total 29ms, of which 15ms are spent on the user and
16ms are spent on the server. The timings reflect what was
expected: issuing involves the server performing a blind sig-
nature, while the user simply encrypts the secret attribute;

1https://github.com/UCL-InfoSec/AnonID OP

whereas, registering the pseudonym involves blinding and
generating a zero-knowledge proof at the user, and verifying
it at the server – which balances the computational load.

5. CONCLUSIONS
UnlimitID demonstrates that the OAuth protocol can be

upgraded so as to not violate user privacy by creating unlink-
able pseudo-identities based on multi-show attribute-based
credentials. Unlike PseudoID [2] and Crypto-Book [8], Un-
limitID is usable within current OAuth flows with modifi-
cations needed only by the relatively few IdPs, while the
multitudes of already-deployed RPs can remain unchanged,
except for the optional case where RPs want to protect their
users from the ”mixed-up IdP” attack by checking that the
authorization code is accompanied by a fresh signature un-
der the long-term secret stored by the user that the IdP does
not have access to. The anonymity provided by UnlimitID
is proportional to the number of active users on the IdP that
share the same values in their credentials, and so should in-
crease for large IdPs. As it is compatible with OAuth, it
can be deployed and used today, and future work will test
UnlimitID with privacy-aware IdPs that want to maintain
compatibility with OpenID Connect while maintaining the
privacy of their users.
Acknowledgements. The authors are supported by NEXT-
LEAP (EU H2020 ref: 688722) and EPSRC Grant EP/M013-
286/1.

6. REFERENCES
[1] M. Chase, S. Meiklejohn, and G. Zaverucha. Algebraic

MACs and keyed-verification anonymous credentials. In
Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security, pages
1205–1216, 2014.

[2] A. Dey and S. Weis. Pseudoid: Enhancing privacy in
federated login. HotPETS Workshop, 2010.

[3] D. Fett, R. Küsters, and G. Schmitz. SPRESSO: A
secure, privacy-respecting single sign-on system for the
Web. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications
Security, pages 1358–1369. ACM, 2015.

[4] D. Fett, R. Küsters, and G. Schmitz. A comprehensive
formal security analysis of OAuth 2.0. 2016. arXiv
preprint arXiv:1601.01229.

[5] H. Halpin and B. Cook. Federated identity as
capabilities. In Annual Privacy Forum, pages 125–139,
2012.

[6] D. Hardt. The OAuth 2.0 authorization framework,
2012. https://tools.ietf.org/html/rfc6749.

[7] E. Käsper. Fast elliptic curve cryptography in openssl.
In Financial Cryptography and Data Security - FC
2011 Workshops, pages 27–39, 2011.

[8] J. Maheswaran, D. Jackowitz, E. Zhai, D. I. Wolinsky,
and B. Ford. Building privacy-preserving cryptographic
credentials from federated online identities. In
Proceedings of the ACM Conference on Data and
Application Security and Privacy, pages 3–13. ACM,
2016.

[9] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and
C. Mortimore. OpenID Connect Core 1.0, 2014.
http://openid.net/specs/openid-connect-core-1 0.html.


